A temporally explicit species distribution model for a long distance avian migrant, the common cuckoo
نویسندگان
چکیده
Modelling the distribution of migratory species has rarely been extended beyond breeding and wintering ranges despite many species showing much more complex movement patterns with multiple stopovers. We aimed to create a temporally explicit species distribution model describing the full annual distribution cycle, and use it to model the complex seasonal shifts in distribution of the common cuckoo Cuculus canorus, a declining long-distance migrant. To do this we used full-year satellite telemetry occurrence data, with their associated temporal information, to inform a temporally explicit species distribution model using MaxEnt. The resulting full-year distribution model was highly predictive (AUC 0.894) and appeared to have generality at the species-level despite being informed by data from a single breeding population. Comparison of our methodology with seasonal distribution models describing the breeding, winter and migration ranges separately showed that our full-year method provided more general and extensive predictions and performed better when tested with an independent dataset. When species distribution models based on a single season exclude environmental conditions experienced by birds in other parts of the annual cycle they risk underestimating niche breadth and neglecting the importance of stopover habitat. Conversely, models which simply average conditions across a season may miss the significance of finer scale within-season movements and overestimate niche breadth. In contrast, our framework for a fullyear migrant distribution model successfully captures the finer-scale changes expected in seasonal environments and can be used to inform conservation management at every stage of migration. The full-year model framework appears to produce temporal distribution models generalised to the species-level from occurrence data limited to few individuals of a single population and may have particular utility when aiming to describe the distribution of species with complex migration patterns from telemetry data.
منابع مشابه
Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts.
Phenological responses to climate change vary among taxa and across trophic levels. This can lead to a mismatch between the life cycles of ecologically interrelated populations (e.g. predators and prey), with negative consequences for population dynamics of some of the interacting species. Here we provide, to our knowledge, the first evidence that climate change might disrupt the association be...
متن کاملRapid change in host use of the common cuckoo Cuculus canorus linked to climate change.
Parasites require synchrony with their hosts so if host timing changes with climate change, some parasites may decline and eventually go extinct. Residents and short-distance migrant hosts of the brood parasitic common cuckoo, Cuculus canorus, have advanced their phenology in response to climate change more than long-distance migrants, including the cuckoo itself. Because different parts of Eur...
متن کاملAvian population consequences of climate change are most severe for long-distance migrants in seasonal habitats.
One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that insectivorous long-distance migrant species in The Netherlands declined strongly (1984-2004) in forests, a h...
متن کاملAvian vision and the evolution of egg color mimicry in the common cuckoo.
Coevolutionary arms races are a potent force in evolution, and brood parasite-host dynamics provide classical examples. Different host-races of the common cuckoo, Cuculus canorus, lay eggs in the nests of other species, leaving all parental care to hosts. Cuckoo eggs often (but not always) appear to match remarkably the color and pattern of host eggs, thus reducing detection by hosts. However, ...
متن کاملPattern mimicry of host eggs by the common cuckoo, as seen through a bird's eye.
Cuckoo-host interactions provide classical examples of coevolution. Cuckoos place hosts under selection to detect and reject foreign eggs, while host defences result in the evolution of host-egg mimicry in cuckoos. Despite a long history of research, egg pattern mimicry has never been objectively quantified, and so its coevolution with host defences has not been properly assessed. Here, we use ...
متن کامل